1.
A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19.
Goud, PT, Bai, D, Abu-Soud, HM
International journal of biological sciences. 2021;(1):62-72
Abstract
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with "cytokine storms" could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.
2.
Use of Thiols in the Treatment of COVID-19: Current Evidence.
Cazzola, M, Rogliani, P, Salvi, SS, Ora, J, Matera, MG
Lung. 2021;(4):335-343
-
-
Free full text
-
Abstract
There is a possible role for oxidative stress, a state characterized by an altered balance between the production of free radicals or reactive oxygen species (ROS) and antioxidant defences, in coronavirus disease 2019 (COVID-19), the genesis of which is quite complex. Excessive oxidative stress could be responsible for the alveolar damage, thrombosis, and red blood cell dysregulation observed in COVID-19. Apparently, deficiency of glutathione (GSH), a low-molecular-weight thiol that is the most important non-enzymatic antioxidant molecule and has the potential to keep the cytokine storm in check, is a plausible explanation for the severe manifestations and death in COVID-19 patients. Thiol drugs, which are considered mucolytic, also possess potent antioxidant and anti-inflammatory properties. They exhibit antibacterial activity against a variety of medically important bacteria and may be an effective strategy against influenza virus infection. The importance of oxidative stress during COVID-19 and the various pharmacological characteristics of thiol-based drugs suggest a possible role of thiols in the treatment of COVID-19. Oral and intravenous GSH, as well as GSH precursors such as N-acetylcysteine (NAC), or drugs containing the thiol moiety (erdosteine) may represent a novel therapeutic approach to block NF-kB and address the cytokine storm syndrome and respiratory distress observed in COVID-19 pneumonia patients.
3.
Melatonin interferes with COVID-19 at several distinct ROS-related steps.
Camp, OG, Bai, D, Gonullu, DC, Nayak, N, Abu-Soud, HM
Journal of inorganic biochemistry. 2021;:111546
-
-
Free full text
-
Abstract
Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.