-
1.
Propolis and Diet Rich in Polyphenols as Cariostatic Agents Reducing Accumulation of Dental Plaque.
Kurek-Górecka, A, Walczyńska-Dragon, K, Felitti, R, Baron, S, Olczyk, P
Molecules (Basel, Switzerland). 2022;(1)
Abstract
Conducted studies indicate the relationship between oral health and systemic diseases. Moreover, the latest research indicated that cariogenic bacteria may severely influence the course of SARS-CoV-2 infection and increase risk of COVID-19 complications. This article aims to review various applications of propolis and pay attention to a healthy diet rich in polyphenols, which may allow the reduction of dental plaque accumulation. A literature review has been conducted from June until November 2021. It showed that propolis could be a useful agent in decreasing the accumulation of dental plaque. Moreover, a diet rich in polyphenols prevents cariogenic bacteria and reduces the accumulation of dental plaque. A reduction of a dental plaque may influence the risk of a severe course of COVID-19. Therefore, propolis and a diet rich in polyphenols may play an important role in prophylaxis of systemic diseases. Recently, it has been proven that oral infection may affect cardiovascular system, musculoskeletal system, respiratory system, nervous system, as well as may be a risk factor for diabetes mellitus. These aspects should stimulate clinicians to further research about polyphenols.
-
2.
Levocetirizine and montelukast in the COVID-19 treatment paradigm.
May, BC, Gallivan, KH
International immunopharmacology. 2022;:108412
-
-
Free full text
-
Abstract
Levocetirizine, a third-generation antihistamine, and montelukast, a leukotriene receptor antagonist, exhibit remarkable synergistic anti-inflammatory activity across a spectrum of signaling proteins, cell adhesion molecules, and leukocytes. By targeting cellular protein activity, they are uniquely positioned to treat the symptoms of COVID-19. Clinical data to date with an associated six-month follow-up, suggests the combination therapy may prevent the progression of the disease from mild to moderate to severe, as well as prevent/treat many of the aspects of 'Long COVID,' thereby cost effectively reducing both morbidity and mortality. To investigate patient outcomes, 53 consecutive COVID-19 test (+) cases (ages 3-90) from a well-established, single-center practice in Boston, Massachusetts, between March - November 2020, were treated with levocetirizine and montelukast in addition to then existing protocols [2]. The data set was retrospectively reviewed. Thirty-four cases were considered mild (64%), 17 moderate (32%), and 2 (4%) severe. Several patients presented with significant comorbidities (obesity: n = 22, 41%; diabetes: n = 10, 19%; hypertension: n = 24, 45%). Among the cohort there were no exclusions, no intubations, and no deaths. The pilot study in Massachusetts encompassed the first COVID-19 wave which peaked on April 23, 2020 as well as the ascending portion of the second wave in the fall. During this period the average weekly COVID-19 case mortality rate (confirmed deaths/confirmed cases) varied considerably between 1 and 7.5% [37]. FDA has approved a multicenter, randomized, placebo-controlled, Phase 2 clinical trial design, replete with electronic diaries and laboratory metrics to explore scientific questions not addressed herein.
-
3.
Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19.
García-Escobar, A, Vera-Vera, S, Jurado-Román, A, Jiménez-Valero, S, Galeote, G, Moreno, R
Biomolecules. 2022;(1)
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a type I integral membrane that exists in two forms: the first is a transmembrane protein; the second is a soluble catalytic ectodomain of ACE2. The catalytic ectodomain of ACE2 undergoes shedding by a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), in which calmodulin mediates the calcium signaling pathway that is involved in ACE2 release, resulting in a soluble catalytic ectodomain of ACE2 that can be measured as soluble ACE2 plasma activity. The shedding of the ACE2 catalytic ectodomain plays a role in cardiac remodeling and endothelial dysfunction and is a predictor of all-cause mortality, including cardiovascular mortality. Moreover, considerable evidence supports that the ACE2 catalytic ectodomain is an essential entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Additionally, endotoxins and the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNFα) all enhanced soluble catalytic ectodomain ACE2 shedding from the airway epithelia, suggesting that the shedding of ACE2 may represent a mechanism by which viral entry and infection may be controlled such as some types of betacoronavirus. In this regard, ACE2 plays an important role in inflammation and thrombotic response, and its down-regulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury. Soluble forms of ACE2 have recently been shown to inhibit SARS-CoV-2 infection. Furthermore, given that vitamin D enhanced the shedding of ACE2, some studies reported that vitamin D treatment is associated with prognosis improvement in COVID-19. This is an updated review on the evidence, clinical, and therapeutic applications of ACE2 for COVID-19.
-
4.
Resolving the equation between mucormycosis and COVID-19 disease.
Pasrija, R, Naime, M
Molecular biology reports. 2022;(4):3349-3356
-
-
Free full text
-
Abstract
The COVID-19 patients, both infected and recovered are rapidly contracting mucormycetes infections due to the 'Mucorales' order, under Zygomycetes class of fungi. The mucorales fungi commonly known to exist in our natural surroundings including soil, but the frequency of incidences was never rampant. This sudden spike in infections, is locally known as 'black fungus,' and is affecting various organs, including- eyes, sinuses, nose, brain, skin, intestine, lungs, etc. The severity of situation is ascertainable from the fact that, in certain cases surgical eye/jaws removal persists as the only viable option to avert mortality, as therapeutic interventions are limited. This epidemic situation intrigued experts to investigate the probable reason behind this unpredicted escalation in reported cases, including in recuperated COVID-19 patients, as person-to-person spread of infection is not common. The comparison of physiological parameters in healthy and COVID-19 afflicted patients highlights that the underlying conditions including diabetes mellitus, steroidal therapy, lymphopenia (decreased CD4+ and CD8+ lymphocytes), deregulated cytokine release storm, elevated free iron levels (hemosiderosis) in blood and insulin insensitivity are playing major roles in deteriorating conditions in rarely pathogenic fungal infections. This review is an attempt to explain the rationalities that makes people vulnerable to mucormycetes infection.
-
5.
Platelet extracellular vesicles in COVID-19: Potential markers and makers.
Puhm, F, Flamand, L, Boilard, E
Journal of leukocyte biology. 2022;(1):63-74
-
-
Free full text
-
Abstract
Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagulation and immunity. Extracellular vesicles are messengers that not only transmit signals between cells, but also provide information about the status of their cell of origin. Thus, pEVs have potential as both biomarkers of platelet activation and contributors to pathology. Coronavirus Disease-19 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a complex disease affecting multiple organs and is characterized by a high degree of inflammation and risk of thrombosis in some patients. In this review, we introduce pEVs as valuable biomarkers in disease with a special focus on their potential as predictors of and contributors to COVID-19.
-
6.
Interactions of Co, Cu, and non-metal phthalocyanines with external structures of SARS-CoV-2 using docking and molecular dynamics.
Alencar, WLM, da Silva Arouche, T, Neto, AFG, de Castro Ramalho, T, de Carvalho Júnior, RN, de Jesus Chaves Neto, AM
Scientific reports. 2022;(1):3316
Abstract
The new coronavirus, SARS-CoV-2, caused the COVID-19 pandemic, characterized by its high rate of contamination, propagation capacity, and lethality rate. In this work, we approach the use of phthalocyanines as an inhibitor of SARS-CoV-2, as they present several interactive properties of the phthalocyanines (Pc) of Cobalt (CoPc), Copper (CuPc) and without a metal group (NoPc) can interact with SARS-CoV-2, showing potential be used as filtering by adsorption on paints on walls, masks, clothes, and air conditioning filters. Molecular modeling techniques through Molecular Docking and Molecular Dynamics were used, where the target was the external structures of the virus, but specifically the envelope protein, main protease, and Spike glycoprotein proteases. Using the g_MM-GBSA module and with it, the molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics provided information on the root-mean-square deviation of the atomic positions provided values between 1 and 2.5. The generalized Born implicit solvation model, Gibbs free energy, and solvent accessible surface area approach were used. Among the results obtained through molecular dynamics, it was noticed that interactions occur since Pc could bind to residues of the active site of macromolecules, demonstrating good interactions; in particular with CoPc. Molecular couplings and free energy showed that S-gly active site residues interacted strongly with phthalocyanines with values of - 182.443 kJ/mol (CoPc), 158.954 kJ/mol (CuPc), and - 129.963 kJ/mol (NoPc). The interactions of Pc's with SARS-CoV-2 may predict some promising candidates for antagonists to the virus, which if confirmed through experimental approaches, may contribute to resolving the global crisis of the COVID-19 pandemic.
-
7.
Hypoxia-Inducible Factor Signaling in Inflammatory Lung Injury and Repair.
Evans, CE
Cells. 2022;(2)
Abstract
Inflammatory lung injury is characterized by lung endothelial cell (LEC) death, alveolar epithelial cell (AEC) death, LEC-LEC junction weakening, and leukocyte infiltration, which together disrupt nutrient and oxygen transport. Subsequently, lung vascular repair is characterized by LEC and AEC regeneration and LEC-LEC junction re-annealing, which restores nutrient and oxygen delivery to the injured tissue. Pulmonary hypoxia is a characteristic feature of several inflammatory lung conditions, including acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and severe coronavirus disease 2019 (COVID-19). The vascular response to hypoxia is controlled primarily by the hypoxia-inducible transcription factors (HIFs) 1 and 2. These transcription factors control the expression of a wide variety of target genes, which in turn mediate key pathophysiological processes including cell survival, differentiation, migration, and proliferation. HIF signaling in pulmonary cell types such as LECs and AECs, as well as infiltrating leukocytes, tightly regulates inflammatory lung injury and repair, in a manner that is dependent upon HIF isoform, cell type, and injury stimulus. The aim of this review is to describe the HIF-dependent regulation of inflammatory lung injury and vascular repair. The review will also discuss potential areas for future study and highlight putative targets for inflammatory lung conditions such as ALI/ARDS and severe COVID-19. In the development of HIF-targeted therapies to reduce inflammatory lung injury and/or enhance pulmonary vascular repair, it will be vital to consider HIF isoform- and cell-specificity, off-target side-effects, and the timing and delivery strategy of the therapeutic intervention.
-
8.
The Effect of Plant Metabolites on Coronaviruses: A Comprehensive Review Focusing on their IC50 Values and Molecular Docking Scores.
Farshi, P, Kaya, EC, Hashempour-Baltork, F, Khosravi-Drani, K
Mini reviews in medicinal chemistry. 2022;(3):457-483
Abstract
Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome) was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we reviewed 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.
-
9.
Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity.
White, JH
Nutrients. 2022;(2)
Abstract
Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.
-
10.
Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies.
Berlansky, S, Sallinger, M, Grabmayr, H, Humer, C, Bernhard, A, Fahrner, M, Frischauf, I
Cells. 2022;(2)
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.