-
1.
'The long tail of Covid-19' - The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients.
Doykov, I, Hällqvist, J, Gilmour, KC, Grandjean, L, Mills, K, Heywood, WE
F1000Research. 2020;9:1349
-
-
-
Free full text
Plain language summary
‘Long COVID’ or the persistence of symptoms after SARS-CoV-2 infection, such as fatigue, is becoming increasingly common. As the emergence of the virus is still relatively recent in research terms, little is known about the long-term impact of the viruses infection. This study sought to generate further insights into the management and diagnostic of long COVID, by assessing a range of inflammatory markers from blood serum samples. Examined were 10 samples of health care workers with previous asymptomatic or moderate SARS-CoV-2 infections, compared to 10 samples of SARS-CoV-2 naive health care workers. The serum was analyzed by mass spectrometry using a customized panel of the 96 immune response associated proteins. Despite being mild to moderate cases, the results showed that even 40-60 days after infection, significant disturbance in the immune systems inflammatory response could be observed. Particularly markers that reflect anti-inflammatory pathways and mitochondrial stress. The study highlighted six of the most noteworthy proteins and included a brief description of their role. The authors suggest that analysing proteins by using targeted proteomic technology, could serve as a cost-effective strategy to further investigate the changes in inflammatory responses post SARS-CoV-2 infection. Which could help to aid the identification of potential treatment targets in the future. Relevant findings from this small study for clinical practice are that even mild to moderate SARS-CoV-2 infection can alter the inflammatory responses for months afterwards.
Abstract
'Long Covid', or medical complications associated with post SARS-CoV-2 infection, is a significant post-viral complication that is being more and more commonly reported in patients. Therefore, there is an increasing need to understand the disease mechanisms, identify drug targets and inflammatory processes associated with a SARS-CoV-2 infection. To address this need, we created a targeted mass spectrometry based multiplexed panel of 96 immune response associated proteins. We applied the multiplex assay to a cohort of serum samples from asymptomatic and moderately affected patients. All patients had tested positive for a SARS-CoV-2 infection by PCR and were determined to be subsequently positive for antibodies. Even 40-60 days post-viral infection, we observed a significant remaining inflammatory response in all patients. Proteins that were still affected were associated with the anti-inflammatory response and mitochondrial stress. This indicates that biochemical and inflammatory pathways within the body can remain perturbed long after SARS-CoV-2 infections have subsided even in asymptomatic and moderately affected patients.
-
2.
Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection.
Townsend, L, Dyer, AH, Jones, K, Dunne, J, Mooney, A, Gaffney, F, O'Connor, L, Leavy, D, O'Brien, K, Dowds, J, et al
PloS one. 2020;15(11):e0240784
-
-
-
Free full text
Plain language summary
Tiredness is a common symptom of Covid-19; however, it is unknown if this fatigue persists once recovered. This observational study of 128 recovered Covid-19 patients aimed to determine if fatigue persisted after recovery and whether severity of disease could predict fatigue. The results showed that post Covid-19 fatigue was reported in more than half of the participants and was particularly pronounced in females and in those with depression. Severity of disease did not predict fatigue. It was concluded that fatigue appears to outlast infection and fatigue was independent of disease severity. This study could be used by health care practitioners to understand that fatigue is common even after recovery from Covid-19 infection and women and sufferers of depression are the most susceptible.
Abstract
Fatigue is a common symptom in those presenting with symptomatic COVID-19 infection. However, it is unknown if COVID-19 results in persistent fatigue in those recovered from acute infection. We examined the prevalence of fatigue in individuals recovered from the acute phase of COVID-19 illness using the Chalder Fatigue Score (CFQ-11). We further examined potential predictors of fatigue following COVID-19 infection, evaluating indicators of COVID-19 severity, markers of peripheral immune activation and circulating pro-inflammatory cytokines. Of 128 participants (49.5 ± 15 years; 54% female), more than half reported persistent fatigue (67/128; 52.3%) at median of 10 weeks after initial COVID-19 symptoms. There was no association between COVID-19 severity (need for inpatient admission, supplemental oxygen or critical care) and fatigue following COVID-19. Additionally, there was no association between routine laboratory markers of inflammation and cell turnover (leukocyte, neutrophil or lymphocyte counts, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, C-reactive protein) or pro-inflammatory molecules (IL-6 or sCD25) and fatigue post COVID-19. Female gender and those with a pre-existing diagnosis of depression/anxiety were over-represented in those with fatigue. Our findings demonstrate a significant burden of post-viral fatigue in individuals with previous SARS-CoV-2 infection after the acute phase of COVID-19 illness. This study highlights the importance of assessing those recovering from COVID-19 for symptoms of severe fatigue, irrespective of severity of initial illness, and may identify a group worthy of further study and early intervention.
-
3.
Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review.
Al-Horani, RA, Kar, S
Viruses. 2020;12(10)
-
-
-
Free full text
Plain language summary
The covid-19 pandemic has required the identification of therapies to prevent infection and limit severity. A previous paper by the same authors reviewed therapies that block the virus in the early stages of its lifecycle. This very large review of over 300 papers aimed to summarise therapeutics which are aimed at blocking the lifecycle of the virus after it has entered the body’s cells. The authors began by reviewing the lifecycle of the covid-19 virus explaining how it enters the body’s cells, replicates inside and then is released to infect new cells. Several antivirals, antimalarials and natural products were then reviewed. Of note, Remdesivir is being trialled in covid-19 patients, with mixed results, however, is being recommended in the US for the treatment of hospitalised covid-19 patients with severe disease. Ribavirin, which is being trialled in combination with other antivirals is also showing promising results in shortening hospitalisation times in covid-19 patients. It was concluded that any stage of the covid-19 lifecycle could be a target for therapeutics and combining therapies is likely to be more successful than monotherapy. This paper could be used by health care professionals to understand the most recent therapeutic research for covid-19.
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
-
4.
Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents.
Khadke, S, Ahmed, N, Ahmed, N, Ratts, R, Raju, S, Gallogly, M, de Lima, M, Sohail, MR
Virology journal. 2020;17(1):154
-
-
-
Free full text
Plain language summary
Severe manifestations of COVID-19 infection and mortality are associated with a cytokine storm. This is an excessive inflammatory response to the infection leading to an overproduction of pro-inflammatory signalling molecules, which consequently contributes to tissue and organ damage. This literature review summarised current knowledge, as of June 2020, about virus-associated cytokine storm, virus-host interactions and immunological mechanism, to gain a better understanding of the phenomena observed in COVID-19 infections and devise better treatment strategies. The review briefly outlines the epidemiology of COVID-19, predictors of severity of disease, mode of transmission, testing, viral structure, mechanism of invasion of the host cell, replication and immune invasion and the progression of the four stages of the cytokine storm. The second part of the review discusses antiviral therapeutics of interest with a table summarising drugs, mechanism and available data. This article may be of interest to those who like to delve further into the mechanisms and immune components involved in a cytokine storm and gain an oversight of the pathways targeted by allopathic agents that have been put forward as treatment options.
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in progressive organ damage. DISCUSSION We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ƙB) signaling. It effectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, and hemodynamic instability. Important cytokines involved in this phase are interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. This is typically followed by a recovery phase with production of antibodies against the virus. We summarize published data regarding virus-host interactions, key immunological mechanisms responsible for virus-associated CRS, and potential opportunities for therapeutic interventions. CONCLUSION Evidence regarding SARS-CoV-2 epidemiology and pathogenesis is rapidly evolving. A better understanding of the pathophysiology and immune system dysregulation associated with CRS and acute respiratory distress syndrome in severe COVID-19 is imperative to identify novel drug targets and other therapeutic interventions.
-
5.
Dissecting the interaction between COVID-19 and diabetes mellitus.
Chee, YJ, Tan, SK, Yeoh, E
Journal of diabetes investigation. 2020;11(5):1104-1114
-
-
-
Free full text
-
Plain language summary
Several countries have reported higher death rates and more severe cases of covid-19 amongst individuals with chronic diseases such as type 2 diabetes. This review of 100 papers aimed to investigate the interconnecting factors which may contribute to poorer prognosis in individuals with covid-19 and type 2 diabetes. Although the evidence suggests that patients with type 2 diabetes have poorer outcomes after contracting covid-19, they are not more susceptible to infection. The paper reported that mechanisms which may increase severity in type 2 diabetics are abnormal immune function, increased susceptibility to inflammation, the increased adherence of the virus to target cells and reduced ability to fight infection. It is important to manage blood sugars when suffering from covid-19. The paper reviewed the use of several medications such as metformin, dipeptidyl peptidase-4 inhibitors (DPP4), glucagon-like peptide-1 agonists and insulin in the context of individuals suffering from covid-19, with insulin being the treatment of choice in the acutely ill patient. Current treatments of covid-19 were also reviewed such as chloroquine and hydroxychloroquine, Lopinavir-ritonavir, IL-6 receptor agonists, type 1 interferon and remdesivir. It was concluded that clinicians should be aware of the risks in patients with type 2 diabetes and covid-19. However as new data is made available, the chronic and long-term implications will become clearer. This study could be used by health care professionals to ensure that patients with type 2 diabetes do everything they can to avoid covid-19 infection and that if contracted these patients are closely monitored for severe disease.
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic that is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2. Data from several countries have shown higher morbidity and mortality among individuals with chronic metabolic diseases, such as diabetes mellitus. In this review, we explore the contributing factors for poorer prognosis in these individuals. As a significant proportion of patients with COVID-19 also have diabetes mellitus, this adds another layer of complexity to their management. We explore potential interactions between antidiabetic medications and renin-angiotensin-aldosterone system inhibitors with COVID-19. Suggested recommendations for the use of antidiabetic medications for COVID-19 patients with diabetes mellitus are provided. We also review pertinent clinical considerations in the management of diabetic ketoacidosis in COVID-19 patients. In addition, we aim to increase clinicians' awareness of the metabolic effects of promising drug therapies for COVID-19. Finally, we highlight the importance of timely vaccinations for patients with diabetes mellitus.
-
6.
Viruses belonging to Anelloviridae or Circoviridae as a possible cause of chronic fatigue.
Grinde, B
Journal of translational medicine. 2020;18(1):485
-
-
-
Free full text
Plain language summary
Chronic fatigue syndrome (CFS) is often triggered by a virus. This review argues that viruses already present in the body may be the cause of this condition and identifies two groups of viruses the anello and circoviruses as potential causes. The paper explains that both viruses are already present in many individuals, and only become a problem when the immune system is supressed by a secondary infection. When this happens the anello and circoviruses can penetrate the brain resulting in CFS. Therapies that inhibit these viruses are required and recently certain antimalarials have reported to be potential candidates. Further research is required. This study could be used by healthcare professionals to extend research into the role of viruses that are already present within the body on CFS.
Abstract
Chronic fatigue often starts with an acute viral infection-as witnessed in the case of SARS-CoV-2-but indirect consequences of these infections are presumably the actual cause of the condition. As recently reviewed in this journal, the culprit could be a virus already present in the patient. The review covers several types of viruses, but concludes that the question is still open. The focus is on well known, pathogenic viruses for which there are ample diagnostic tools. I argue that there is one lesser-known group of viruses, the related anello- and circoviruses, which ought to be investigated. More or less everyone harbours at least one strain of these viruses in the blood, while not in the spinal fluid. They normally replicate at a low level, but their activity increases in an immune suppressed host; and there are cases where they do reach the brain. The initial infection could facilitate their access to the brain.
-
7.
COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status.
Thomas, T, Stefanoni, D, Reisz, JA, Nemkov, T, Bertolone, L, Francis, RO, Hudson, KE, Zimring, JC, Hansen, KC, Hod, EA, et al
JCI insight. 2020;5(14)
-
-
-
Free full text
Plain language summary
There is increasing urgency for the development of Covid-19 therapies. Treatments preventing infection and decreasing the amount of virus in the body have largely been unsuccessful and so the focus has turned to host biological pathways, which may be altered by Covid-19 infection. This observational study of forty-nine Covid-19 positive and negative individuals aimed to determine alterations in the hosts metabolism. The results showed that Covid-19 infection was associated with disrupted host inflammatory and immune pathways. Markers for kidney dysfunction were also increased alongside raised blood sugar levels and fatty acids in the blood. It was concluded that inflammatory markers may be an indicator for disease severity and a target for Covid-19 therapy. Dietary therapy could be used to target blood fatty acid changes brought about by Covid-19 infection. This study could be used by healthcare professionals to understand that inflammation is increased in Covid-19 patients and in lieu of approved therapies, dietary intervention may be of benefit.
Abstract
BACKGROUNDReprogramming of host metabolism supports viral pathogenesis by fueling viral proliferation, by providing, for example, free amino acids and fatty acids as building blocks.METHODSTo investigate metabolic effects of SARS-CoV-2 infection, we evaluated serum metabolites of patients with COVID-19 (n = 33; diagnosed by nucleic acid testing), as compared with COVID-19-negative controls (n = 16).RESULTSTargeted and untargeted metabolomics analyses identified altered tryptophan metabolism into the kynurenine pathway, which regulates inflammation and immunity. Indeed, these changes in tryptophan metabolism correlated with interleukin-6 (IL-6) levels. Widespread dysregulation of nitrogen metabolism was also seen in infected patients, with altered levels of most amino acids, along with increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and renal dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis. Interestingly, metabolite levels in these pathways correlated with clinical laboratory markers of inflammation (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen).CONCLUSIONIn conclusion, this initial observational study identified amino acid and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.FUNDINGBoettcher Foundation Webb-Waring Biomedical Research Award; National Institute of General and Medical Sciences, NIH; and National Heart, Lung, and Blood Institute, NIH.
-
8.
A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants.
Oladele, JO, Ajayi, EI, Oyeleke, OM, Oladele, OT, Olowookere, BD, Adeniyi, BM, Oyewole, OI, Oladiji, AT
Heliyon. 2020;6(9):e04897
-
-
-
Free full text
Plain language summary
At the time of writing, there were no known vaccines or treatments for Covid-19. This systematic review article aimed to investigate how Covid-19 works in the body and any Nigerian based medicinal plants that could mitigate this. The paper first began by discussing that the highly contagious nature and susceptibility of the population has ensured that Covid-19 has spread to all continents and that men may be more susceptible than women. How the virus enters the body’s cells, and the extreme inflammatory reaction it causes was extensively discussed. The paper went on to explain that Covid-19 had a higher infectivity and was more easily transmitted but a lower death rate in comparison to other coronaviruses such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). The authors then go on to extensively review plants that may be of benefit to individuals with Covid-19 due to their anti-inflammatory, anti-viral, antioxidant, and cell membrane and immune boosting properties. Finally, plants used in the treatment of other respiratory infections such as cold and flu were reviewed. It was concluded that although plants have been effective in the treatment of symptoms of Covid-19, research is needed to prove their abilities and that combining plants as a treatment regimen may be more effective. This study could be used by healthcare professionals to understand the mode of action of Covid-19 and how natural therapies could be included in a treatment plan.
Abstract
Despite the frightening mortality rate associated with COVID-19, there is no known approved drug to effectively combat the pandemic. COVID-19 clinical manifestations include fever, fatigue, cough, shortness of breath, and other complications. At present, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical intervention for COVID-19 is only palliative and limited to support. Thus, there is an exigent need for effective and non-invasive treatment. This article evaluates the possible mechanism of actions of SARS-CoV-2 and present Nigeria based medicinal plants which have pharmacological and biological activities that can mitigate the hallmarks of the pathogenesis of COVID-19. SARS-CoV-2 mode of actions includes hyper-inflammation characterized by a severe and fatal hyper-cytokinaemia with multi-organ failure; immunosuppression; reduction of angiotensin-converting enzyme 2 (ACE2) to enhance pulmonary vascular permeability causing damage to the alveoli; and further activated by open reading frame (ORF)3a, ORF3b, and ORF7a via c-Jun N- terminal kinase (JNK) pathway which induces lung damage. These mechanisms of action of SARS-CoV-2 can be mitigated by a combination therapy of medicinal herbs based on their pharmacological activities. Since the clinical manifestations of COVID-19 are multifactorial with co-morbidities, we strongly recommend the use of combined therapy such that two or more herbs with specific therapeutic actions are administered to combat the mediators of the disease.
-
9.
Recent Advances in Psoriasis Research; the Clue to Mysterious Relation to Gut Microbiome.
Komine, M
International journal of molecular sciences. 2020;21(7)
-
-
-
Free full text
Plain language summary
Psoriasis is a chronic inflammatory disease where the skin forms bumpy red patches covered with white scales. There is no cure, but medications have focused on supressing the immune response. There is a link between the gut microbiome and psoriasis but it is poorly understood. This review includes the current understanding of how psoriasis develops and discusses the recent findings to support further research in this area. The composition of the gut microbiome affects inflammation in the whole body. This inflammation is associated with cardiovascular disease, diabetes mellitus and other inflammatory disorders. Recent studies have linked cardiovascular disease, insulin resistance, and metabolic syndrome to an imbalance in the gut microbiome. Psoriasis is often found alongside these conditions with similar abnormalities in gut bacteria. An imbalance in gut microbiome could cause certain people to develop psoriasis. The role of the gut microbiome needs to be further clarified but mounting evidence for this gut/skin link means that other therapeutic options may be available for treatment in the future.
Abstract
Psoriasis is a chronic inflammatory cutaneous disease, characterized by activated plasmacytoid dendritic cells, myeloid dendritic cells, Th17 cells, and hyperproliferating keratinocytes. Recent studies revealed skin-resident cells have pivotal roles in developing psoriatic skin lesions. The balance in effector T cells and regulatory T cells is disturbed, leading Foxp3-positive regulatory T cells to produce proinflammatory IL-17. Not only acquired but also innate immunity is important in psoriasis pathogenesis, especially in triggering the disease. Group 3 innate lymphoid cell are considered one of IL-17-producing cells in psoriasis. Short chain fatty acids produced by gut microbiota stabilize expression of Foxp3 in regulatory T cells, thereby stabilizing their function. The composition of gut microbiota influences the systemic inflammatory status, and associations been shown with diabetes mellitus, cardiovascular diseases, psychomotor diseases, and other systemic inflammatory disorders. Psoriasis has been shown to frequently comorbid with diabetes mellitus, cardiovascular diseases, psychomotor disease and obesity, and recent report suggested the similar abnormality in gut microbiota as the above comorbid diseases. However, the precise mechanism and relation between psoriasis pathogenesis and gut microbiota needs further investigation. This review introduces the recent advances in psoriasis research and tries to provide clues to solve the mysterious relation of psoriasis and gut microbiota.
-
10.
Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism.
Scheele, C, Wolfrum, C
Endocrine reviews. 2020;41(1)
-
-
-
Free full text
-
Plain language summary
Brown adipose tissue (BAT) is an important contributor to the regulation of metabolism via cellular communication with organs such as liver, muscle, gut and central nervous system. BAT is important for heat generation and is at high levels in human infants. Levels of activation of BAT decline as we age and it has been shown that the amount of BAT is smaller and its activity reduced in those with obesity and type 2 diabetes. To date, there is no answer to efficiently restore functional BAT in aging and obese subjects. This review looks at experiments done on the factors secreted from active BAT (batokines). The review aims to provide a structure for the processes and cell types involved in BAT and the recent findings of BAT whole-body communication are discussed. Altogether, these findings demonstrate that BAT has an adaptive capacity. Studying batokines, offers an alternative approach to identify novel drug targets for metabolic regulation.
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).