Broccoli consumption affects the human gastrointestinal microbiota.

The Journal of nutritional biochemistry. 2019;63:27-34

Other resources

Plain language summary

Diet affects metabolic and gastrointestinal diseases, with the microbiome considered to be a mediating factor. Broccoli is a good source of fibre and phytochemicals including glucosinolates. The aim of this investigator-blinded, controlled feeding, randomised, crossover study was to evaluate the effects of broccoli on the composition and function of the microbiome. 18 healthy adults received 200 g cooked broccoli and 20 g raw daikon radish per day for 18 days in addition to a controlled, brassica-free diet or the same diet without the broccoli and daikon radish, with a 24-day washout period. A statistically significant increase in the ratio of Bacteroidetes to Firmicutes was observed following the broccoli intervention. When stratified by BMI above or below 25, this increase was only seen in those with a lower BMI whilst those with a higher BMI displayed a decrease in the ratio, although the latter was not statistically significant. In those with the lower BMI, there was also a correlation between the changes in the microbiota composition and glucosinolate metabolites. It was predicted that the involved changes would affect the functions of the endocrine system, transport and catabolism and energy metabolism. The authors concluded that eating broccoli may affect both the composition and the function of the microbiome.

Expert Review


Conflicts of interest: None

Take Home Message:
  • Broccoli consumption at dosages of 200g per day were shown to change the composition of gastrointestinal microbiota, increasing Bacteroidetes and decreasing Firmicutes, and impact their function
  • The observed results were strongest in those with a BMI of less than 26
  • While interesting, the study only included 18 participants and therefore the results should be further confirmed.

Evidence Category:
  • X A: Meta-analyses, position-stands, randomized-controlled trials (RCTs)
  • B: Systematic reviews including RCTs of limited number
  • C: Non-randomized trials, observational studies, narrative reviews
  • D: Case-reports, evidence-based clinical findings
  • E: Opinion piece, other

Summary Review:
Introduction

There is growing evidence linking dysbiosis of the gastrointestinal microbiota and diet-induced gastrointestinal and metabolic diseases. Both long-term and acute dietary changes, fasting, eating frequency, and consumption of specific fibres and food phytochemicals play a role in shaping the composition and function of the microbiota, although evidence is lacking for specific foods. This study aimed to determine the impact of broccoli intake on the number of bacterial strains and their functional capacity.

Methods

This was a single-blind, randomised, crossover, complete feeding intervention. Study participants were healthy adults (n=18, females =10). Participants were requested to not eat Brassica vegetables for 3 weeks before the start of the study.

Subjects participated in two 18-day diet periods separated by a 24-hour washout, during which breakfast and dinner were consumed on site to observe compliance. The control diet was prepared using traditional American foods, excluding all Brassica vegetables. During the broccoli intervention period, participants consumed the same base diet with the addition of 200g of broccoli.

Faecal samples were collected on day 1, and day 16. Quantitative polymerase chain reaction was performed on bacterial strains. On day 17, time series plasma sampling and 24-hour urine collection was done.

Results

There was no difference in alpha diversity (a measure of microbiome diversity within a sample) between the two treatment periods. This indicates that no bacterial species were extinguished by broccoli treatment. Beta diversity analysis (a measure of the (dis)similarity between samples) indicated that bacterial communities were impacted by treatment (P=0.03).

After broccoli consumption, Bacteroidetes increased by 10% (P =0.03), while Firmicutes decreased by 8% (P=0.05). Overall the ratio of Bacteroidetes to Firmicutes increased by 37% (P=0.01) versus a 5% decrease in the control period. The Bacteroides genus increased by 6% (P=0.02) versus a 2% decrease in the control period.

Interestingly, the effects were most strong in those with a lower BMI (< 26 kg/m2) who had an increase in metabolites after broccoli consumption. Algorithms to predict the function of the microbiota showed that broccoli increased endocrine (P=0.05), energy metabolism (P=0.01), transport and catabolism (P=0.04) pathways.

Conclusion

Broccoli intake, at 200g daily, changes the composition and potentially impacts the function of the gut microbiota.

Clinical practice applications:
  • Studies like this allow practitioners to focus on specific foods in specific quantities to positively alter the microbiota and their function
  • Cruciferous vegetables, like broccoli, kale, cauliflower, cabbage, Brussel sprouts, are an important group as they contain fibre and phytonutrients such as glucosinolates. These compounds can be metabolised by the microbiota into active compounds with health benefits. This study has shown the bidirectional benefit of broccoli consumption in that it can positively impact the function and composition of the microbiota
  • Interestingly, the results in this small study were driven by participants with a BMI of less than 26. Sub-group analysis found no statistically significant relationships in participants with BMI >26
  • It is worth noting that it is possible that the addition of 5g of fibre from the broccoli is also contributing to the changes observed.

Considerations for future research:
  • Larger, controlled feeding studies that isolate specific foods to identify their effects on the microbiota are needed
  • Genetic sequencing for only a few bacterial myrosinases has been completed and therefore future studies should aim to assess the metabolic capabilities in faecal samples such as myrosinase activity
  • While this study and others have shown changes in the types of bacteria after cruciferous vegetable consumption the consistency of results has been mixed potentially due to differing study designs and treatment dosages. Further studies to clarify and confirm these results would be beneficial
  • To assess the function of the microbiota a predictive algorithm was used. This requires experimental confirmation by such methods as metabolite profiling and whole genome shotgun sequencing.

Abstract

The human gastrointestinal microbiota is increasingly linked to health outcomes; however, our understanding of how specific foods alter the microbiota is limited. Cruciferous vegetables such as broccoli are a good source of dietary fiber and phytonutrients, including glucosinolates, which can be metabolized by gastrointestinal microbes. This study aimed to determine the impact of broccoli consumption on the gastrointestinal microbiota of healthy adults. A controlled feeding, randomized, crossover study consisting of two 18-day treatment periods separated by a 24-day washout was conducted in healthy adults (n=18). Participants were fed at weight maintenance with the intervention period diet including 200 g of cooked broccoli and 20 g of raw daikon radish per day. Fecal samples were collected at baseline and at the end of each treatment period for microbial analysis. Beta diversity analysis indicated that bacterial communities were impacted by treatment (P=.03). Broccoli consumption decreased the relative abundance of Firmicutes by 9% compared to control (P=.05), increased the relative abundance of Bacteroidetes by 10% compared to control (P=.03) and increased Bacteroides by 8% relative to control (P=.02). Furthermore, the effects were strongest among participants with body mass index <26 kg/m2, and within this group, there were associations between bacterial relative abundance and glucosinolate metabolites. Functional prediction revealed that broccoli consumption increased the pathways involved in the functions of the endocrine system (P=.05), transport and catabolism (P=.04), and energy metabolism (P=.01). These results reveal that broccoli consumption affects the composition and function of the human gastrointestinal microbiota.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Microbiome
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool ; Urine

Methodological quality

Jadad score : 1
Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Broccoli