The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation.

Frontiers in cellular and infection microbiology. 2022;12:903570
Full text from:

Plain language summary

Cardiovascular disease (CVD) accounts for 31% of all-cause mortality worldwide. Irregularities in the composition of intestinal microbial composition, genetic factors, nutrition, metabolic irregularities, and smoking are among the potential causes of CVD. Intestinal permeability and translocation of endotoxins and bacterial metabolites to systemic circulation may trigger an immune response and inflammation, which may increase the risk of CVD. Synthesis of bacterial metabolites such as trimethylamine N-oxide (TMAO) by choline-inducing gut bacteria and reduced consumption of dietary TMAO precursors may elevate the CVD risk. This review explores the latest research on the role of gut microbiota in the development of atherosclerosis and CVD, as well as potential strategies to prevent CVD by targeting TMAO-producing gut bacteria. Elevated levels of TMAO in the bloodstream can lead to the buildup of cholesterol and ultimately result in atherosclerosis. However, consuming probiotics and fibre-rich foods can help regulate gut bacteria, reduce inflammation, and improve lipid profiles, all of which contribute to better cardiovascular health. More future robust studies are required to examine the mechanistic insights and confirm whether TMAO can serve as a biomarker for preventing CVD through the therapeutic modulation of intestinal bacteria.

Abstract

In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.

Lifestyle medicine

Fundamental Clinical Imbalances : Immune and inflammation ; Structural
Patient Centred Factors : Mediators/Gut microbiota
Environmental Inputs : Diet ; Microorganisms
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool
Bioactive Substances : Microbial metabolites

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Journal Article ; Review

Metadata